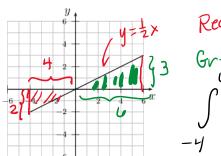


lesson2

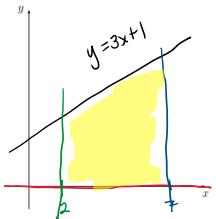
Name:___

REVIEW OF INTEGRATION MATH 16020	
1 Antiderivatives	
(a) $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ (where $n \neq -1$) (b) $\int \frac{1}{x} dx = \frac{(n/x) + C}{(n+1)^n}$	
(b) $\int \frac{1}{x} dx = \frac{2717X}{7}$ (c) $\int a dx = \frac{0}{2} \frac{1}{2} \frac{1}{2$	
(d) $\int \sin(x) dx = \frac{-\cos(x)}{\cos(x)} + \frac{\cos(x)}{\cos(x)} = \frac{-\cos(x)}{\cos(x)} = \frac{-\cos(x)}$	
(e) $\int \cos(x) dx = S(n(x)) + C$ (f) $\int \sec^2(x) dx = \tan(x) + C$ $\int \csc^2(x) dx = -\cot(x) + C$	
(g) $\int \sec(x) \tan(x) dx = \frac{\operatorname{Sec}(x) + \operatorname{C}}{\operatorname{Sec}(x) \cot(x)} dx = -\operatorname{csc}(x) + \operatorname{C}(x) +$	HC
(h) $\int e^x dx = \underbrace{e^x + C}$ (i) $\int af(x) dx = \underbrace{a \int f(x) dx}$ (where a is a constant)	
(i) $\int af(x) dx = \underbrace{\alpha \int f(x) dx}$ (where a is a constant) (j) $\int (f(x) + g(x)) dx = \underbrace{\int f(x) dx} + \underbrace{\int g(x) dx}$	
(k) $\int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx$	
Example 1. $\int \left(2e^x + \frac{5}{x} + \cot(x)(\csc(x) + \sin(x))\right) dx$	
Example 1. $\int \left(2e^{x} + \frac{5}{x} + \cot(x)(\csc(x) + \sin(x))\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \cot(x)\sin(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \cot(x)\sin(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \cot(x)\cos(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \sin(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \sin(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \sin(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \sin(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \sin(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \sin(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \sin(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \sin(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \sin(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\csc(x) + \sin(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\cos(x) + \cos(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\cos(x) + \cos(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\cos(x) + \cos(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\cos(x)\right) dx$ $\int \left(2e^{x} + \frac{5}{x} + \cot(x)\cos$	


2 Definite Integrals

- Indefinite integrals

 Antideriavtives (no limits on ∫) are _functionS_____
- Definite integrals (number limits on ∫) are number


The geometric meaning of $\int_a^b f(x) dx$ is the Signed area between y = f(x) and the X = axi S, from x = a to x = b.

Example 2. Find $\int_{-4}^{6} \frac{1}{2} x \, dx$ geometrically.

Signed Red Area: $-\frac{1}{2}(4)(2) = -4$ Green Area: $+\frac{1}{2}(6)(3) = +9$ $\int \frac{1}{2}x \, dx = -4+9 = 5$

Example 3. Set up a definite integral that represents the area of the region bounded by y = 3x + 1, y = 0, x = 2, and x = 7.

 $\int_{2}^{7} (3x+1) dx$

The Fundamental Theorem of Calculus 3

Theorem 4 (Fundamental Theorem of Calculus, Part II). If f is continuous on the interval [a,b] and Fis any antiderivative of f, then

$$F'(x) = f(x)$$

i.e. $F(x) = \int f(x) dx$ $\int_a^b f(x) dx = F(b) - F(a)$

Theorem 5 (Net Change Theorem). If F is differentiable on the interval [a, b], then

Frample 6. Evaluate the definite integrals
$$\int_{a}^{b} F'(x) dx = \underbrace{F(b) - F(a)}_{\text{net change}} \int_{a}^{b} rate dx = net change$$

Theorem's (Net Change Theorem). If F is apperentiable on the interval
$$[a, b]$$
, then

$$\int_{a}^{b} F'(x) dx = \underbrace{F(b) - F(a)}_{Net - change} \quad \text{for the } dx = \text{net } change$$
Example 6. Evaluate the definite integrals.

$$\frac{\chi^{2}}{\sqrt{\chi}} = \frac{\chi^{2}}{\chi^{3}} = \chi^{3/2}$$

$$= \int_{a}^{b} F'(x) dx = \underbrace{F(b) - F(a)}_{Net - change} \quad \text{for the } dx = \text{net } change$$

$$\frac{E\chi}{\sqrt{\chi}} \quad \sqrt{\chi(t)} = S(t)$$

$$\sqrt{\chi(t)} dt = \int_{a}^{b} f'(x) dx = \underbrace{F(b) - F(a)}_{Net - change} \quad \text{for the } dx = \text{net } change$$

$$\frac{E\chi}{\sqrt{\chi(t)}} \quad \sqrt{\chi(t)} = S(t)$$

$$\sqrt{\chi(t)} dt = \int_{a}^{b} f'(x) dx = \underbrace{F(b) - F(a)}_{Net - change} \quad \text{for the } dx = \text{net } change$$

$$\frac{E\chi}{\sqrt{\chi(t)}} \quad \sqrt{\chi(t)} = S(t)$$

$$\sqrt{\chi(t)} dt = \int_{a}^{b} f'(x) dx = \underbrace{F(b) - F(a)}_{Net - change} \quad \text{for the } dx = \text{net } change$$

$$\frac{E\chi}{\sqrt{\chi(t)}} \quad \sqrt{\chi(t)} dx = \underbrace{F(b) - F(a)}_{Net - change} \quad \text{for the } dx = \text{net } change$$

$$\frac{E\chi}{\sqrt{\chi(t)}} \quad \sqrt{\chi(t)} dx = \underbrace{F(b) - F(a)}_{Net - change} \quad \text{for the } dx = \text{net } change$$

$$\frac{E\chi}{\sqrt{\chi(t)}} \quad \sqrt{\chi(t)} dt = \underbrace{\int_{a}^{b} f'(x) dx}_{\chi(t)} dx = \underbrace{\int_{a}^{b} f'(x) dx}_{\chi(t)}$$

$$\begin{array}{rcl}
&= 1523 \\
&= 20 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&= 142 \\
&=$$

$$= \frac{4}{35} \times \frac{7/4}{16}$$

$$= \frac{4}{35} \left(\frac{16}{16} \right)^{\frac{7}{4}} - \frac{4}{35} \left(0 \right)^{\frac{7}{4}}$$

$$= \frac{4}{35} \left(\frac{16}{35} \right)^{\frac{7}{4}} - \frac{4}{35} \left(0 \right)^{\frac{7}{4}}$$

3

, derivative

Example 7. At noon, a hot air balloon pilot begins to fill his balloon with air at a rate of

$$r(t) = 1000t^2$$

where t is measured in hours since noon and r(t) is measured in cubic feet per hour. V(t) volume at time t r(t) = V'(t')

(a) How much air goes into the balloon between 1:00PM and 2:00PM?

$$r(t) = V'(t)$$

(a) How much air goes into the balloon between 1:00PM and 2:00PM?

$$V(2)-V(1) = \int_{000}^{2} V'(t) dt$$

$$= \int_{000}^{2} r(t) dt = \int_{000}^{2} l_{000}t^{2} dt = \frac{l_{000}t^{3}}{3} \int_{1}^{2} r(t) dt$$

$$= \int_{000}^{2} r(t) dt = \int_{000(1)^{3}}^{2} r(t) dt = \frac{l_{000}t^{3}}{3} \int_{1}^{2} r(t) dt$$

$$= \int_{000}^{2} r(t) dt = \int_{000(1)^{3}}^{2} r(t) dt = \frac{l_{000}t^{3}}{3} \int_{1}^{2} r(t) dt$$

$$= \int_{000}^{2} r(t) dt = \int_{000(1)^{3}}^{2} r(t) dt = \frac{l_{000}t^{3}}{3} \int_{1}^{2} r(t) dt$$

$$= \int_{000}^{2} r(t) dt = \int_{000(1)^{3}}^{2} r(t) dt = \frac{l_{000}t^{3}}{3} \int_{1}^{2} r(t) dt$$

$$= \int_{000}^{2} r(t) dt = \int_{000(1)^{3}}^{2} r(t) dt = \frac{l_{000}t^{3}}{3} \int_{1}^{2} r(t) dt$$

(b) Approximately how many hours does it take to fill the hot air balloon? (Hot air balloons typically hold 77,000 cubic feet of air.) Round your answer to the nearest hundredth of an hour.

$$\int_{0}^{7} v'(t) dt = 77,000$$

$$\int_{0}^{7} 1000t^{2} dt = 77,000$$

$$\int_{0}^{1000t^{3}} \int_{0}^{7} = 77,000$$

$$\int_{0}^{1000T^{3}} - \frac{1000(0)^{3}}{3} = 77,000$$

$$\int_{0}^{7} = 77,000 \left(\frac{3}{1000}\right)$$

$$\int_{0}^{7} = 231$$

$$\int_{0}^{7} = 37231 \approx 4.14 \text{ hours}$$

$$\int_{0}^{7} = \sqrt{3}$$

Example 8. If $y' = \sin(x)$ and y(0) = 5, find $y(\frac{\pi}{6})$.

 $-\frac{1}{2} + 1 = y(\frac{\pi}{2}) + \frac{\pi}{2}$

$$\int_{0}^{\pi/\omega} dy = y(\overline{x}) - y(0) \text{ Net charge}$$

$$\int_{0}^{\pi/\omega} \int_{0}^{\pi/\omega} \sin(x) dx = y(\overline{x}) - 5$$

$$-\cos(x) / \pi/\omega$$

$$-\cos(\overline{x}) + \cos(0) = y(\overline{x}) - 5$$

$$T = \sqrt{23}$$

$$y(\frac{1}{6}) = 6 - \frac{13}{2}$$

Exam 1 Page 4